

STF26N60M2, STFI26N60M2

N-channel 600 V, 0.14 Ω typ., 20 A MDmesh™ M2 Power MOSFETs in TO-220FP and I²PAKFP packages

Datasheet - production data

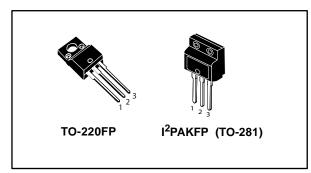
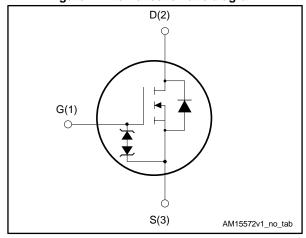



Figure 1: Internal schematic diagram

Features

Order code	V _{DS} @ T _{Jmax}	R _{DS(on)} max.	I _D	Ртот
STF26N60M2	650 V	0.165.0	20 A	30
STFI26N60M2	650 V	0.165 Ω 2	20 A	W

- Extremely low gate charge
- Excellent output capacitance (C_{OSS}) profile
- 100% avalanche tested
- Zener-protected

Applications

- Switching applications
- LCC converters, resonant converters

Description

These devices are N-channel Power MOSFETs developed using MDmesh™ M2 technology. Thanks to their strip layout and improved vertical structure, these devices exhibit low on-resistance and optimized switching characteristics, rendering them suitable for the most demanding high efficiency converters.

Table 1: Device summary

Order code	Marking	Package	Packing
STF26N60M2	26N60M2	TO-220FP	Tube
STFI26N60M2	2011001112	I²PAKFP	Tube

Contents

1	Electric	al ratings	3
2		cal characteristics	
	2.1	Electrical characteristics (curves)	6
3	Test cir	·cuits	8
4	Packag	e information	9
	4.1	TO-220FP package information	10
	4.2	I ² PAKFP (TO-281) package information	12
5	Revisio	n history	14

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate-source voltage	±25	V
I _D ⁽¹⁾	Drain current (continuous) at T _{case} = 25 °C	20	А
ID	Drain current (continuous) at T _{case} = 100 °C	13	А
I _{DM} ⁽²⁾	Drain current (pulsed)	80	Α
P _{TOT}	Total dissipation at T _{case} = 25 °C	30	W
dv/dt ⁽³⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽⁴⁾	MOSFET dv/dt ruggedness	50	V/IIS
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; T_C = 25 °C)	2.5	kV
T _{stg}	Storage temperature	55 to 150	°C
T _j	Operating junction temperature	-55 to 150	C

Notes:

Table 3: Thermal data

Symbol	Parameter		Unit	
R _{thj-case}	Thermal resistance junction-case	4.2	0000	
R _{thj-amb}	Thermal resistance junction-ambient	62.5	°C/W	

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR} ⁽¹⁾	Avalanche current, repetitive or not repetitive	3.8	Α
E _{AR} ⁽²⁾	Single pulse avalanche energy	250	mJ

Notes:

⁽¹⁾ Limited by maximum junction temperature.

 $^{^{\}left(2\right) }$ Pulse width is limited by safe operating area.

 $^{^{(3)}}$ $I_{SD} \leq 20$ A, di/dt=400 A/µs; $V_{DS(peak)} < V_{(BR)DSS}, \ V_{DD} = 80\% \ V_{(BR)DSS}.$

 $^{^{(4)}} V_{DS} \le 480 V.$

 $^{^{\}left(1\right)}$ Pulse width limited by $T_{jmax}.$

 $^{^{(2)}}$ starting T_{j} = 25 °C, I_{D} = $I_{AR},\,V_{DD}$ = 50 V.

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 5: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	600			٧
Zoro goto voltogo droin		$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V}$			1	
I _{DSS} Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V},$ $T_{case} = 125 \text{ °C}$			100	μΑ	
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 25 \text{ V}$			±10	μΑ
$V_{GS(th)}$	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 10 A		0.14	0.165	Ω

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	1360	•	
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	88	ı	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	-	2	-	ρ.
Coss eq. (1)	Equivalent output capacitance	$V_{DS} = 0$ to 480 V, $V_{GS} = 0$ V	-	124	-	pF
R_{G}	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	4	-	Ω
Qg	Total gate charge	$V_{DD} = 480 \text{ V}, I_{D} = 20 \text{ A},$	-	34	•	
Q_{gs}	Gate-source charge	V _{GS} = 10 V (see <i>Figure 15</i> :	-	5.6	1	nC
Q_{gd}	Gate-drain charge	"Gate charge test circuit")	-	16.3	-	

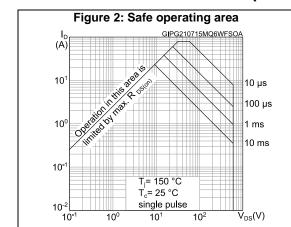
Notes:

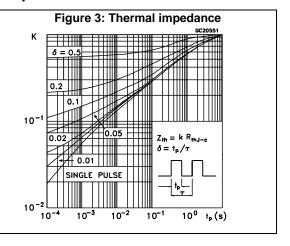
Table 7: Switching times

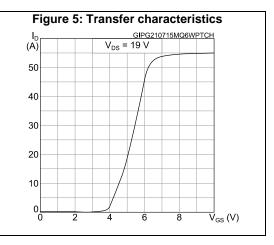
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_D = 10 \text{ A}$	-	20.2	-	
t _r	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 14: "Switching times	-	8	-	
t _{d(off)}	Turn-off delay time	test circuit for resistive load"	-	66	-	ns
t _f	Fall time	and Figure 19: "Switching time waveform")	-	10	-	

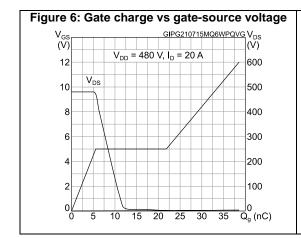
 $^{^{(1)}}$ $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 8: Source-drain diode


Symbol	Parameter	Test conditions		Тур.	Max.	Unit
I _{SD}	Source-drain current		-		20	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		80	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 20 A	-		1.6	V
t _{rr}	Reverse recovery time	$I_{SD} = 20 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	360		ns
Q_{rr}	Reverse recovery charge	V _{DD} = 60 V (see Figure 16: "Test circuit for inductive load	-	5		μC
I _{RRM}	Reverse recovery current	switching and diode recovery times")	ı	27		Α
t _{rr}	Reverse recovery time	$I_{SD} = 20 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	556		ns
Q _{rr}	Reverse recovery charge	V_{DD} = 60 V, T_j = 150 °C (see Figure 16: "Test circuit for	-	8		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	29		Α


Notes:


 $^{^{\}left(1\right) }$ Pulse width is limited by safe operating area.


 $^{^{(2)}}$ Pulse test: pulse duration = 300 $\mu s,$ duty cycle 1.5%.

2.1 Electrical characteristics (curves)

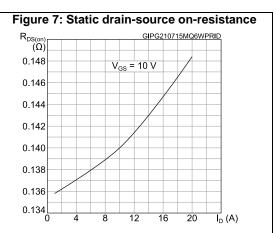


Figure 8: Capacitance variations

C
(pF)

103

C
Clss

Coss

101

f = 1 MHz

Coss

1001

1001

1001

1001

1001

1001

1002

Coss

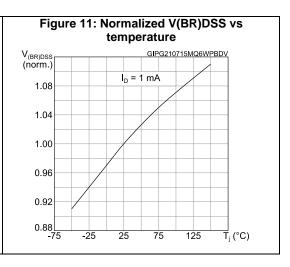
C

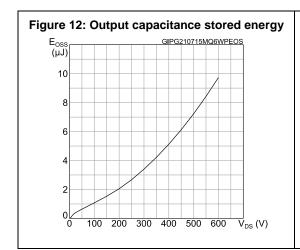
Figure 10: Normalized on-resistance vs temperature

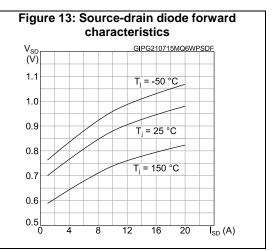
R_{DS(on)} GIPG210715MQ6WPRON
(norm.)

2.4

2.0

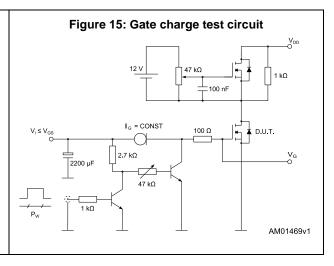

1.6

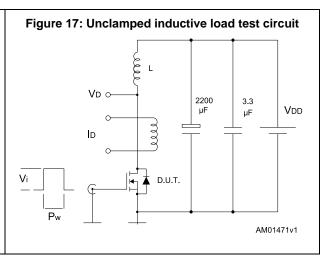

1.2

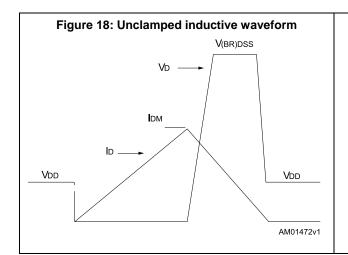

0.8

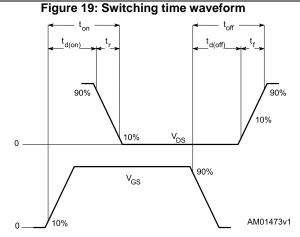
0.4

-75
-25
25
75
125
T_j (°C)


3 Test circuits


Figure 14: Switching times test circuit for resistive load


RL 2200 3.3 µF VDD


VB RG D.U.T.

AM01468v1

57/

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-220FP package information

Figure 20: TO-220FP package outline

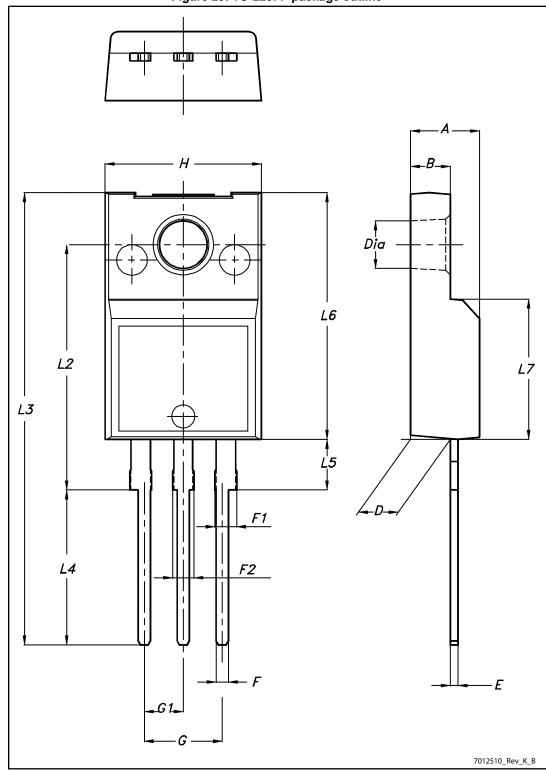


Table 9: TO-220FP package mechanical data

D !		mm	
Dim.	Min.	Тур.	Max.
A	4.4		4.6
В	2.5		2.7
D	2.5		2.75
Е	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

4.2 I²PAKFP (TO-281) package information

Figure 21: I²PAKFP (TO-281) package outline

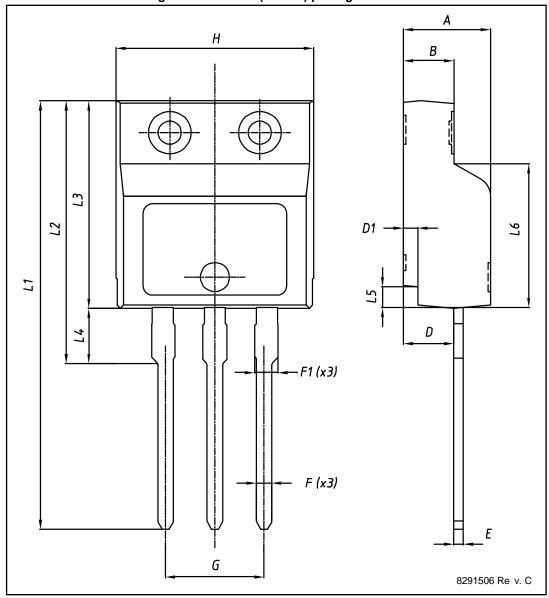


Table 10: I²PAKFP (TO-281) mechanical data

Dim	,	mm	
Dim.	Min.	Тур.	Max.
A	4.40	-	4.60
В	2.50		2.70
D	2.50		2.75
D1	0.65		0.85
Е	0.45		0.70
F	0.75		1.00
F1			1.20
G	4.95		5.20
Н	10.00		10.40
L1	21.00		23.00
L2	13.20		14.10
L3	10.55		10.85
L4	2.70		3.20
L5	0.85		1.25
L6	7.50	7.60	7.70

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
05-Mar-2015	1	First release.
30-July-2015	2	Text and formatting changes throughout document Datasheet promoted from preliminary data to production data In Section <i>Electrical characteristics</i> : - updated and renamed table <i>Static</i> (was On/off states) - updated table <i>Dynamic</i> , <i>Switching times</i> and <i>Source-drain diode</i> - added section <i>Electrical characteristics</i> (curves)

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

